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Def. The regret of a policy 𝐴 under instance 𝑟 = {𝑟! 𝑡 } is defined as 

Reg 𝐴, 𝑟 = 𝐸 1
"#$

%

𝑟∗(𝑡) − 𝑍'!
" .

For a family 𝐹 of instances, the worst-case regret of 𝐴 is max
()*

Reg(𝐴, 𝑟). 
The minimax regret is the minimum achievable worst-case regret among 
all policies.
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Smooth Non-stationary bandits
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• Smoothly-changing environment
• The underlying environment changes in a smooth manner, e.g., temperature, 

seasonal product demands, economic factors
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Smoothly-changing Environment
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Hölder Class

Definition 2.2 (Hölder Class). For integers 𝛽 ≥ 1 and 𝐿 > 0, we say a 
function 𝑓: 0,1 → 𝑅 is 𝛽-Hölder and write 𝑓 ∈ Σ 𝛽, 𝐿 if 

(i) 𝑓 is (𝛽 − 1)-order differentiable, and 
(ii) 𝑓 !"# and 𝑓 are both 𝐿-Lipschitz.

Example.
• 𝛽 = 1: 𝑓 ∈ Σ 1, 𝐿 if and only if 𝑓 is 𝐿-Lipschitz 
• 𝛽 = 2: 𝑓 ∈ Σ 2, 𝐿 if and only if  𝑓 is differentiable and 𝑓’ and 𝑓

are 𝐿-Lipschitz
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Hölder Class
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1-Hölder, but not 2-Hölder

2-Hölder, but not 3-Hölder
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Main Results

• Smoothly-changing environment
• Level of smoothness -- Hölder class!
• [Besbes, Gur, Zeevi’14] admits an optimal 𝑇>/@ regret for 1-Hölder 

(Lipschitz) reward function
• Can we break this bound under smooth non-stationarity?

• Main results
• First separation between the smooth and non-smooth regime 
• A 𝑇@/A upper bound for 2-Hölder reward function
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Upper Bound

• First separation between the smooth (𝛽 ≥ 2) and non-smooth (𝛽 = 1) regime 
• Budgeted Exploration algorithm achieves 𝑇@/A upper bound for 2-Hölder

reward function
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budgetcumulative rewards

epoch sizestopping time

one-arm case

𝛽 = 1: 𝐵 = 𝑇$/,, Δ = 𝑇-$/,
𝛽 = 2: 𝐵 = 𝑇$/., Δ = 𝑇-$/.

exploring

exploiting



Upper Bound

• First separation between the smooth (𝛽 ≥ 2) and non-smooth (𝛽 = 1) regime 
• Budgeted Exploration algorithm achieves 𝑇@/A upper bound for 2-Hölder

reward function – power of exploiting smoothness
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Upper Bound
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1-Hölder, but not 2-Hölder

2-Hölder, but not 3-Hölder

proof technique: amortization
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Main Results

• Smoothly-changing environment
• Level of smoothness -- Hölder class!
• [Besbes, Gur, Zeevi’14] admits an optimal 𝑇>/@ regret for 1-Hölder 

(Lipschitz) reward function
• Can we break this bound under smooth non-stationarity?

• Main results
• First separation between the smooth and non-smooth regime 
• A 𝑇@/A upper bound for 2-Hölder reward function

• Matching lower bound: every policy has worst regret Ω(𝑇
$%!
#$%!) for any 𝛽-

Hölder reward function
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Lower Bound

• Every policy has worst regret Ω(𝑇
$%!
#$%!) for 𝛽-Hölder reward function

• “Hard” instance for 2-Hölder reward function
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Lower Bound

• Every policy has worst regret Ω(𝑇
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#$%!) for 𝛽-Hölder reward function

• “Hard” instance for 2-Hölder reward function
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(𝛽 − 1)-times differentiable 
bowl-shaped curve

𝑂 𝛿/

𝑂 𝛿/

Likelihood to choose a wrong arm ≥ $
0



Lower Bound

• Hard instance construction
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pyramid flock

Hard instance construction for 𝛽 = 4


