Smooth Non-stationary Bandits

Qian Xie

CS6789 Project Presentation

Based on joint work with Su Jia, Nathan Kallus, and Peter Frazier

- Non-stationary bandits [Besbes, Gur, Zeevi'14]
 - Environment changing over time

- Non-stationary bandits [Besbes, Gur, Zeevi'14]
 - Environment changing over time
 - Middle ground between the stochastic bandits and adversarial bandits

- Non-stationary bandits [Besbes, Gur, Zeevi'14]
 - Environment changing over time
 - Middle ground between the stochastic bandits and adversarial bandits
 - Adversary chooses mean reward function in advance
 - Rewards are realized stochastically

- Non-stationary bandits [Besbes, Gur, Zeevi'14]
 - Environment changing over time
 - Middle ground between the stochastic bandits and adversarial bandits
 - Adversary chooses mean reward function $r_a(t)$ in advance
 - Rewards are realized stochastically
 - Mean reward function is Lipschitz and confined by a total variation budget *V*:

$$\sum_{t=1}^{l} |r_a(t) - r_a(t+1)| \le V$$

- Non-stationary bandits [Besbes, Gur, Zeevi'14]
 - Environment changing over time
 - Middle ground between the stochastic bandits and adversarial bandits
 - Adversary chooses mean reward function $r_a(t)$ in advance
 - Rewards are realized stochastically
 - Mean reward function is Lipschitz and confined by a total variation budget *V*:

$$\sum_{t=1}^{I} |r_a(t) - r_a(t+1)| \le V$$

• Optimal regret bound $\tilde{O}(V^{-}_{3}T^{-}_{3})$

- Non-stationary bandits [Besbes, Gur, Zeevi'14]
 - Adversary chooses mean reward function $r_a(t) \coloneqq \mathbb{E}[Z_a^t]$ in advance
 - Rewards Z_a^t are realized stochastically
 - Mean reward function is Lipschitz and confined by a total variation budget V
 - Optimal regret bound $\tilde{O}(V^{\frac{1}{3}}T^{\frac{2}{3}})$

Def. The *regret* of a policy A under instance $r = \{r_a(t)\}$ is defined as $\operatorname{Reg}(A, r) = E\left[\sum_{t=1}^{T} (r^*(t) - Z_{A_t}^t)\right].$

For a family *F* of instances, the *worst-case regret* of *A* is $\max_{r \in F} \text{Reg}(A, r)$. The *minimax regret* is the minimum achievable worst-case regret among all policies.

- Non-stationary bandits [Besbes, Gur, Zeevi'14]
 - Middle ground between the stochastic bandits and adversarial bandits
 - Adversary chooses mean reward function $r_a(t) \coloneqq \mathbb{E}[Z_a^t]$ in advance
 - Rewards Z_a^t are realized stochastically
 - Mean reward function is Lipschitz and confined by a total variation budget V:

$$\sum_{t=1}^{n} |r_a(t) - r_a(t+1)| \le V$$

- Optimal regret bound $\tilde{O}(V^{\frac{1}{3}}T^{\frac{1}{3}})$
- Allow the adversary to instantaneously shock the reward function's slope

- Non-stationary bandits [Besbes, Gur, Zeevi'14]
 - Allow the adversary to instantaneously shock the reward function's slope

- Non-stationary bandits [Besbes, Gur, Zeevi'14]
 - Allow the adversary to instantaneously shock the reward function's slope

- Non-stationary bandits [Besbes, Gur, Zeevi'14]
 - Middle ground between the stochastic bandits and adversarial bandits
 - Adversary chooses mean reward function $r_a(t)$ in advance
 - Mean reward function is Lipschitz and confined by a total variation budget *V*:

$$\sum_{t=1}^{N} |r_a(t) - r_a(t+1)| \le V$$

- Rewards are realized stochastically
- Optimal regret bound $\tilde{O}(V^{\frac{1}{3}}T^{\frac{2}{3}})$
- Allow the adversary to instantaneously shock the reward function's slope
- Overly pessimistic for some applications

Smooth Non-stationary bandits

- Non-stationary bandits [Besbes, Gur, Zeevi'14]
 - Optimal regret bound $\tilde{O}(V^{\frac{1}{3}}T^{\frac{2}{3}})$
 - Allow the adversary to instantaneously shock the reward function's slope
 - Overly pessimistic for some applications
- Smoothly-changing environment
 - The underlying environment changes in a smooth manner, e.g., temperature, seasonal product demands, economic factors

Smoothly-changing Environment

Yahoo! Front Page Click-Through Rates (CTR)

Smooth Non-stationary Bandits

- Non-stationary bandits [Besbes, Gur, Zeevi'14]
 - Optimal regret bound $\tilde{O}(V^{\frac{1}{3}}T^{\frac{2}{3}})$
 - Allow the adversary to instantaneously shock the reward function's slope
 - Overly pessimistic for some applications
- Smoothly-changing environment
 - The underlying environment changes in a smooth manner, e.g., temperature, seasonal product demands, economic factors
 - Adversaries constrained to choose reward functions that are smooth in time

Smooth Non-stationary Bandits

- Non-stationary bandits [Besbes, Gur, Zeevi'14]
 - Optimal regret bound $\tilde{O}(V^{\frac{1}{3}}T^{\frac{2}{3}})$
 - Allow the adversary to instantaneously shock the reward function's slope
 - Overly pessimistic for some applications
- Smoothly-changing environment
 - The underlying environment changes in a smooth manner, e.g., temperature, seasonal product demands, economic factors
 - Adversaries constrained to choose reward functions that are smooth in time
 - Level of smoothness -- Hölder class!

Hölder Class

Definition 2.2 (Hölder Class). For integers $\beta \ge 1$ and L > 0, we say a function $f: [0,1] \rightarrow R$ is β -Hölder and write $f \in \Sigma(\beta, L)$ if (i) f is $(\beta - 1)$ -order differentiable, and (ii) $f^{(\beta-1)}$ and f are both *L*-Lipschitz.

Example.

- $\beta = 1: f \in \Sigma(1, L)$ if and only if f is L-Lipschitz
- $\beta = 2: f \in \Sigma(2, L)$ if and only if f is differentiable and f' and f are *L*-Lipschitz

Hölder Class

Smooth Non-stationary Bandits

- Non-stationary bandits [Besbes, Gur, Zeevi'14]
 - Optimal regret bound $\tilde{O}(V^{\frac{1}{3}}T^{\frac{2}{3}})$
 - Allow the adversary to instantaneously shock the reward function's slope
- Smoothly-changing environment
 - The underlying environment changes in a smooth manner, e.g., temperature, seasonal product demands, economic factors
 - Adversaries constrained to choose reward functions that are smooth in time
 - Level of smoothness -- Hölder class!
 - [Besbes, Gur, Zeevi '14] admits an optimal $T^{2/3}$ regret with V = O(1) for 1-Hölder (Lipschitz) reward function

Smooth Non-stationary Bandits

- Non-stationary bandits [Besbes, Gur, Zeevi'14]
 - Optimal regret bound $\tilde{O}(V^{\frac{1}{3}}T^{\frac{2}{3}})$
 - Allow the adversary to instantaneously shock the reward function's slope
- Smoothly-changing environment
 - The underlying environment changes in a smooth manner, e.g., temperature, seasonal product demands, economic factors
 - Adversaries constrained to choose reward functions that are smooth in time
 - Level of smoothness -- Hölder class!
 - [Besbes, Gur, Zeevi'14] admits an optimal $T^{2/3}$ regret with V = O(1) for 1-Hölder (Lipschitz) reward function
 - Can we break this bound under smooth non-stationarity?

Main Results

- Smoothly-changing environment
 - Level of smoothness -- Hölder class!
 - [Besbes, Gur, Zeevi'14] admits an optimal $T^{2/3}$ regret for 1-Hölder (Lipschitz) reward function
 - Can we break this bound under smooth non-stationarity?
- Main results
 - First separation between the smooth and non-smooth regime
 - A $T^{3/5}$ upper bound for 2-Hölder reward function

Upper Bound

- First separation between the smooth ($\beta \ge 2$) and non-smooth ($\beta = 1$) regime
- Budgeted Exploration algorithm achieves $T^{3/5}$ upper bound for 2-Hölder reward function

Algorithm 1 Budgeted Exploration Policy $BE(B, \Delta)$ $\beta = 1: B = T^{1/3}, \Delta = T^{-1/3}$ 1: for $i = 1, ..., \Delta^{-1}$ do $\beta = 2: B = T^{1/5}, \Delta = T^{-1/5}$ 2: Select arm 1 from round $t_i + 1$ until round $t_i + S_i$ with $S_i = \min\{\tilde{S}_i, \Delta T\}$ where exploring
stopping time epoch size $\tilde{S}_i = \min\{\tilde{S}: \sum_{t=t_i}^{t_i+s} Z_1^t \leq -B\}$. one-arm case
cumulative rewards budget3: Then select arm 0 from round $t_i + S_i + 1$ till t_{i+1} .4: end for

Upper Bound

- First separation between the smooth ($\beta \ge 2$) and non-smooth ($\beta = 1$) regime
- Budgeted Exploration algorithm achieves $T^{3/5}$ upper bound for 2-Hölder reward function power of exploiting smoothness

Upper Bound

proof technique: amortization

Main Results

- Smoothly-changing environment
 - Level of smoothness -- Hölder class!
 - [Besbes, Gur, Zeevi'14] admits an optimal $T^{2/3}$ regret for 1-Hölder (Lipschitz) reward function
 - Can we break this bound under smooth non-stationarity?
- Main results
 - First separation between the smooth and non-smooth regime
 - A $T^{3/5}$ upper bound for 2-Hölder reward function
 - Matching lower bound: every policy has worst regret $\Omega(T^{\frac{\beta+1}{2\beta+1}})$ for any β -Hölder reward function

Lower Bound

- Every policy has worst regret $\Omega(T^{\frac{\beta+1}{2\beta+1}})$ for β -Hölder reward function
- "Hard" instance for 2-Hölder reward function

Lower Bound

- Every policy has worst regret $\Omega(T^{\frac{\beta+1}{2\beta+1}})$ for β -Hölder reward function
- "Hard" instance for 2-Hölder reward function

Lower Bound

• Hard instance construction

